PAGE
27

FastCAD® & EasyCAD® XP Plug-in Programmer’s Reference

Version 7.03

January 5, 2002

Michael Riddle

Evolution Computing

FastCAD® and EasyCAD® are registered trademarks of Evolution Computing, Inc.

Evolution Computing

7000 N. 16th St. Suite 120-514

Phoenix AZ 85020

480.967.8633

www.fastcad.com
Contents ©2002 Evolution Computing

All rights reserved.

Chapter 1: Introduction

What is an XP?

Way back in 1986, our FastCAD DOS product became the first program to use what today are called plug-ins. This was before Windows, before DLLs even. We developed a way to dynamically loading pieces of code that were not compiled with the main program,. They were used for display and mouse and plotter drivers, etc. And also for 3rd party XPs – What we called extended procedures, or XPs.

Since we’ve been using the term “XP” to refer to products we have been continuously selling and supporting in international commerce since before Microsoft Windows, or even DLLs, existed, we see no reason to change our name just because Microsoft marketing likes it these days. The lifetime of a name at Microsoft is about 2 years, so soon, we’ll have our name to ourselves again.

FastCAD & EasyCAD version 7 supports the use of 3rd-party plug-in additions to the program’s capabilities. Unless noted otherwise, whenever we refer to FastCAD, the discussion also applies to EasyCAD. XPs may be sold and installed separately from the main program by simply copying them into the FastCAD install directory. They should not be placed in the standard Windows shared directory – they are in fact not a shared DLL.

An XP may add its own unique commands to FastCAD, using the same support services as used internally by normal FastCAD commands – they will run just as fast, and have the same facilities available to them as are used in the main program. This efficiency is one of the best reasons for writing an XP in preference to macros or other scripting techniques.

An XP has full access to the current drawing database, and can add, erase, or modify any record therein. XPs can be used to create custom screen tools.

XPs are Windows DLL modules that are written specifically to link with and use functions in the XP toolkit, and they run in the same process and memory space as the main program. Thus they must be “trusted” applications, as there is really no security between them and the main program.

XP’s have the standard “.DLL” file extension, and the standard XP DllMain header code structure, but within that code, functions exported by FastCAD are called to register XP commands or file import/export functions, etc. It is this linkage that differentiates an XP from other DLLs.

There is a large library of supported service, utility functions, and object managers, all of which combine to simplify the task of creating your XP. These services constitute over 80% of the code in FastCAD, with only 20% being used to write all of the program’s commands and screen tools! Quite literally, the only difference between the built-in commands and ones written with an XP is that the built-in commands exist in the main .EXE file.

An XP can be used to create custom entities of your own definition, by writing several standardized service functions that operate on an instance of your custom entity - and then most standard commands and modifiers within FastCAD will automatically work with your custom entity.

XPs written for FastCAD version 7.00 or greater may not be used with older versions of FastCAD, nor may older-version XPs be used with FastCAD version 7.
Choice of Programming Language

XPs may be written in either Microsoft Visual C or C++, version 6.0, or in Microsoft Macro Assembler, version 6.11 or greater. You will need the following software to create and test XPs:

1) Windows 98 or newer operating system

2) Microsoft Visual C++ version 6.0 or greater

3) A copy of FastCAD or EasyCAD version 7.00 or greater for testing

4) The XP toolkit SDK

In addition, if you are writing your XP in assembler, you will need Microsoft MASM version 6.11 or greater.

Please get all of the above installed and working before proceeding. The XP

Toolkit SDK is a zip file – unzip it into a directory “\xp7dev “ on the drive on which your various XP projects will reside.

When writing in assembler, you will still need Visual C – its linker and debugger are used in crating the 32-bit flat memory module DLL files, and in debugging them. The 16-bit linker provided with MASM will not generate 32-bit Windows code.

Also, when writing in assembler, be sure to install the VCVARS32.BAT file in your startup AutoExec sequence, so that the linker may be used from the command line by build scripts.

XPID Numbers

If your XP is going to be a commercial product, you will need to obtain an XPID number from Evolution Computing. Call or e-mail us and provide your name, address, the name of your XP, and who our customers can contact for technical support of your XP, and we will give you your XPID number. This number is used to identify which XP is handling which custom entity or screen tool, etc., so that unique work you do will not get mixed up with another company’s XP.

Getting Started

So how do you get started? After getting all of the required software installed and working, we recommend you first compile and build the sample XPs included with the toolkit, especially either “CXPTEST” for C/C++ development, or “XPTEST” for MASM development. When you have compiled and built these from scratch, copy the resulting DLLs into your FastCAD install directory, and

Use the SPECS menu’s “Installed XPs…” command and see that your XP is listed as being installed. Click on its name to see its ABOUT box. When you get this far, you are in good shape to being learning how to make your own custom XPs.

Note that CXPTEST directory includes an already configured Microsoft Visual C++ project for your use. You might have to make changes to the project settings for your disk drive names, but in most cases, it is a ready to go example of a small XP project.

Chapter 2: Configuring a New Visual C XP Project

Introduction

The first thing you need to do when creating an XP using Microsoft Visual C is to configure a new project. There are several settings and library and include file references you will need to make. You will be doing these steps for each such XP you create. The “CXPTEST” project already has these settings made for you.

What we suggest as a first step is to create a new project, and just copy the CXPTEST.CPP code into it, and use that to build an XP, and see that you get the same results. This will familiarize you with the “overhead” process without needing to get into the details of XP programming – taking it one step at a time.

In this example, we are going to assume that you installed the XP Toolkit SDK into a directory “C:\XP7DEV” and that you will be making your own copy of CXPTEST in the directory “C:\MYCXPTEST”. If you place these files on a different drive, be sure to use the actual drive and file path names in place of these.

First, create a directory C:\MYCXPTEST, and copy the file C:\XP7DEV\CXPTEST\CXPTEST.CPP into that directory. Now we will create a new project for this XP.

In Microsoft Visual C/C++ 6.0 (from now on we’ll shorten that to MSVC), select NEW from the FILE menu, and select the “Projects” tab. Enter the project name “CXPTest” and change the location edit box to contain “C:\MYCXPTest”. Select “Win32 Dynamic-Link Library as the type of project and then click OK.

[image: image1.png]
When you click OK, the following dialog appears. Check the “empty project” button and then continue.

[image: image2.png]
Next a confirmation dialog will appear – clik OK to use the choices you have made. At this point, MSVC adds several files to your “\MyCXPTest” directory.

The next step is to let MSVC know about your source file – CXPTEST.CPP. In the Workspace Window, select the file view tab, and right click on the CXPTest Files line. This will drop down the following menu:

[image: image3.png]
This will bring up a standard system file open dialog, opened to your project’s directory. Click on the CXPTEST.CPP file and then the OPEN button. This will add the source file to you now no longer empty project.

Next, you need to make some project settings: Use the Project Menu’s Settings command to start this dialog box:

[image: image4.png]
Enter the directory “C:MyCXPTest” in the Output file edit box – this is where our final CXPTest.DLL file will be placed when it is compiled and linked.

Next, tell the compiler where to find the XP SDK include files. Click on the C++ Tab at the top of the settings dialog,and select Preprocessor in the category combo box, then enter the name of the XP SDK directory, C:XPDEV, in the additional include directories edit box, as shown below:

[image: image5.png]
Next, you need to tell the linker where to find the FastCAD or EasyCAD import library. (You need to build a different XP for each product if you will be supporting both, as the linker uses different import libs for each product. FastCAD uses C:\XP7DEV\FCW7.LIB, and EasyCAD uses C:\XP7DEV\ECW7.LIB.

Click on the Link tab, and enter “C:\XP7DEV\FCW7.LIB” and a space before everything else in the “Object/Library modules edit box:

[image: image6.png]
I also have changed the Output file name from “C:\MyCXPTest/MyCXPtest.exe” to “C:\MyCXPTest/CXPtest.exe” as I want the XP I create to have the same name as the standard one, so that it will replace it later when we copy it into the FastCAD install directory. Otherwise, we would have to remove the older version first, as it will respond to the same command names, creating confusion as to which XP should be run.

There is one more set of setting required to support debugging your XP. While we won’t use it now, it is a good idea to make all of your settings at one time, and get them out of the way. Select the Debug tab, and enter the path and name of your installed FastCAD that you will use to test your XP:

[image: image7.png]
Now you can click on OK to save your settings. It is also a good idea at this point to select “Save Workspace” in the FILES menu to ensure that all of the above changes are saved with your project.

Editing Your Source File

At this point in your work, you would normally edit your source file. From the Workspace window, on the Files Tab, click to open the files in MyCXPTest, and click on the source folder, then double click on the CXPTest.CPP file, and its source should appear in a main editing window.

Building Your XP

When you have made any changes, you can build your XP by clicking “Rebuild All” in the build menu. If all goes well, this is what you should see in the output window:

Compiling...

cxptest.cpp

Linking...

CXPTest.dll - 0 error(s), 0 warning(s)

If all went well, Congratulations! If not, go back and check each step, and each setting. MSVC can be very fussy about exact spelling.

It’s a good idea at this point to do a “Save All” fro the File menu before quitting MSVC.

Installing and Testing Your XP

To install your newly-built XP, you copy it from C:\MyCXPTest\CXPTest to your FastCAD install directory, typically C:\FastCAD7 which is the normal default install directory, unless you changed it when you installed FastCAD.

To test it, once again, look in the SPECS menu and run the “Installed XPs” command, and click on the CXPTest line – you should then see its about box:

[image: image8.png]
If you type the command “CTEST1” at the command prompt, you will use the code in CXPTest to create lines – it is almost exactly the code of the actual LINE command, and the CTEST2 command is similar to the normal MOVE command. In the next chapter, we’ll take a detailed look at the code in CXPTest to see how this is done.

You might like to modify the CXPTEST.CPP file by changing the about box text and rebuilding and reinstalling, to assure yourself that you are correctly building from the source file – I always do something like this when using other people’s SDKs.

You could change the lines:

////////////////////// CXPTEST About information ////////////////////

void XPCALL About (void)

{

FormSt("CXPTEST commands:\n\n"

 "\tCTEST1 - Create line entities\n"

 "\tCTEST2 - Move entities\n\0"

 ,RSC(FV_NONE),"About CXPTest\0",RSC(FD_MsgBox+FD_BTitle));

}

to be something like this:

////////////////////// CXPTEST About information ////////////////////

void XPCALL About (void)

{

FormSt(" My CXPTEST commands:\n\n"

 "\tCTEST1 - Create line entities\n"

 "\tCTEST2 - Move entities\n\0"

 ,RSC(FV_NONE),"About My CXPTest\0",RSC(FD_MsgBox+FD_BTitle));

}

Chapter 3: A Detailed Look at CXPTEST.CPP

While it would be a good idea to print out a copy of the CXPTEST.CPP file as it is on your disk, in case any changes have been made, I’ll list the version that was current at the time this manual was written, as this is the one we’ll discuss:

//////////// CXPTEST.CPP - FastCAD-7 C-language Test XP //////////

//

//
Written by Mike Riddle 11-4-1999

//
(C)1999 Evolution Computing

//
All rights reserved

//

//

#include <windows.h>

#include "xp7.h"

#define XPID 0xF000

void XPCALL About(void);

void XPCALL CTEST1(void);

void XPCALL CTEST2(void);

char CList[]="CTEST1\0CTEST2\0\0";

PCMDPROC PList[]={About,CTEST1,CTEST2};

XP MyXP =

 { 0,0,"C Test XP - V7",CList,PList,0 };

///////////// DllMain - XP initialization & Unload code /////////

BOOL WINAPI DllMain (HINSTANCE hDLL, DWORD dwReason, LPVOID lpReserved)

{ switch (dwReason)

{ case DLL_PROCESS_ATTACH:

{

MyXP.ModHdl=hDLL;

XPRegister(&MyXP);

break;

}

 case DLL_PROCESS_DETACH:

{

XPUnRegister(&MyXP);

break;

}

}

return TRUE;

}

////////////////////// CXPTEST About information ////////////////

void XPCALL About (void)

{

FormSt("CXPTEST commands:\n\n"

 "\tCTEST1 - Create line entities\n"

 "\tCTEST2 - Move entities\n\0"

 ,RSC(FV_NONE),"About CXPTest\0",RSC(FD_MsgBox+FD_BTitle));

}

//////////////////////// CTEST1 XP command /////////////////////

Line2 BuildL = { sizeof(Line2), ET_Line2, 0, 0, 0, 0, 0, 0, 1, 0.0, 0, 0,

 0.0, 0.0, 1.0, 1.0 };

IDList* hDwgDL;

pENTREC pEntRec;

//

void XPCALL CTEST1B (int Result);

void XPCALL CTEST1C (int Result);

void XPCALL CTEST1 (void)

{

ReqData(RD_2dC8,&BuildL.Geo.p1,"1st point:\0",

RSC(RDC_RXH2),CTEST1B,RDF_NONE,IDH_LINE2);

}

void XPCALL CTEST1B (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

ClearSelect();

// for select by prior

hDwgDL->DLMarkUndo();

SetCursorOrg2(BuildL.Geo.p1.x,BuildL.Geo.p1.y);

ReqData(RD_2dC8,&BuildL.Geo.p2,"Next point:\0",

RSC(RDC_RBand2),CTEST1C,RDF_NONE,IDH_LINE2);

}

void XPCALL CTEST1C (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

//
Append the entity to the database and draw it

pEntRec=hDwgDL->DLApnd(&BuildL);

SetCStuff(pEntRec);

hDwgDL->DLSelect(pEntRec);

EDraw(NULL,pEntRec);

ShowChanges();

//
Setup for chained line creation

BuildL.Geo.p1.x=BuildL.Geo.p2.x;

BuildL.Geo.p1.y=BuildL.Geo.p2.y;

SetCursorOrg2(BuildL.Geo.p1.x,BuildL.Geo.p1.y);

ReqData(RD_2dC8,&BuildL.Geo.p2,"Next point:\0",

RSC(RDC_RBand2),CTEST1C,RDF_NONE,IDH_LINE2);

}

//////////////////////// CTEST2 XP command ////////////////////

GPOINT3
MoveFrom,MoveTo;

TMat
MoveTM;

//

void XPCALL CTEST2B (int Result);

void XPCALL CTEST2C (int Result);

void XPCALL CTEST2D (int Result);

void XPCALL CTEST2 (void)

{

ReqData(RD_Pick,NULL,RSC(RSC_Select),

RSC(RDC_Arrow),CTEST2B,RDF_NONE,IDH_SELECT);

}

void XPCALL CTEST2B (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

ReqData(RD_3dC8,&MoveFrom,RSC(RSC_MoveFrom),

RSC(RDC_RXH3),CTEST2C,RDF_NONE,IDH_MOVE);

}

void XPCALL CTEST2C (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

hDwgDL->DLMarkUndo();

SetCursorOrg3(MoveFrom.x,MoveFrom.y,MoveFrom.z);

ReqData(RD_3dC8,&MoveTo,RSC(RSC_MoveTo),

RSC(RDC_RBand3),CTEST2D,RDF_NONE,IDH_MOVE);

}

int XPCALL CTEST2Rec (IDList* hDL,pENTREC pEntRec,int Parm1, int Parm2)

{

pENTREC pNew;

pNew=hDwgDL->DLClone(pEntRec);

ETran(pNew,&MoveTM);

EErase(NULL,pEntRec);

EDraw(NULL,pNew);

return(0);

}

void XPCALL CTEST2D (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

CTMPSH();

CTMI3();

CTMT3(MoveTo.x-MoveFrom.x,MoveTo.y-MoveFrom.y,MoveTo.z-MoveFrom.z);

STCTM(&MoveTM);

CTMPOP();

hDwgDL->DLScan(&CTEST2Rec,DLS_Edit,0,0);

ShowChanges();

CmdEnd();

}

Essential Definitions

Taking it a bit at a time, the first part of the code is a comment block, followed by:

#include <windows.h>

#include "xp7.h"

#define XPID 0xF000

void XPCALL About(void);

void XPCALL CTEST1(void);

void XPCALL CTEST2(void);

char CList[]="CTEST1\0CTEST2\0\0";

PCMDPROC PList[]={About,CTEST1,CTEST2};

XP MyXP =

 { 0,0,"C Test XP - V7",CList,PList,0 };

The two include lines are essential, and must be the first code in every module of a C XP program. The default XP is for testing use (All XPID numbers 0xF000 through 0xFFFF are reserved for unregistered development and testing – you may use any of them for XP work that will not go onto other people’s system, but it is your responsibility that each XP on your system has a unique XPID number. Commercial products will be assigned unique id numbers by Evolution Computing to ensure there is no collision.

This XP has three command functions, and they are prototyped before they are used.

Clist is a list of NULL-delimited strings that are the keyboard-equivalent commands this XP implements. It is terminated with an extra NULL, Plist is an ordered matching list of the actual C functions that implement these commands. The first one is always your about function, which is required.

The next structure is crucial – it provides essential information to hook your XP into FastCAD. The first two empty values will hook it into a linked list (you need do nothing here), the next string is the text that will be displayed in the “Installed XPs dialog,and then the addresses of Clist and Plist are provided. While more information can be added, this is the minimum required.

The DllMain Function

Every DLL should implement the DllMain function, and XPs are no exception. We use it to save our module handle so we can use DLL-stored dialogs and resources, and to receive load and unload messages and use them to connect and disconnect ourselves from FastCAD.

BOOL WINAPI DllMain (HINSTANCE hDLL, DWORD dwReason, LPVOID lpReserved)

{ switch (dwReason)

{ case DLL_PROCESS_ATTACH:

{

MyXP.ModHdl=hDLL;

XPRegister(&MyXP);

break;

}

 case DLL_PROCESS_DETACH:

{

XPUnRegister(&MyXP);

break;

}

}

return TRUE;

}

The module handle is saved in MyXP.ModHdl, and the XPRegister function then connects our XP structure into the linked list of current XPs. When our XP is unloaded, the XPUnRegister function will safely remove us from the list.

There are other functions that may be placed here, such as registering functions the XP might have to extend file import or export to new file types.

The XPRegister and XPUnRegister functions are part of the SDK and are exported from FastCAD. The XP SDK also defines the XP structure and the include files.

The About Command

void XPCALL About (void)

{

FormSt("CXPTEST commands:\n\n"

 "\tCTEST1 - Create line entities\n"

 "\tCTEST2 - Move entities\n\0"

 ,RSC(FV_NONE),"About CXPTest\0",RSC(FD_MsgBox+FD_BTitle));

}

The About function uses a formatting service provided in the SDK, FormSt (for Format String) that provides an extensive library of data formatting functions. In its simplest form, the text to be displayed is the first parameter, the second parameter points to a list of data items, the third parameter has many uses, but here it is the title of a dialog box, and the last one tells where to send the result – it can be the address of a string. In this case it’s a message box (FD_MsgBox) and the third parameter is it’s title (FD_Btitle). Later, we will devote an entire chapter to the FormSt functions abilities and use.

FastCAD’s Command Structure

While Windows is fairly easy on the user, it makes some intense demands on the programmer. You can not just say, “give me a line of text”, or a picked location on the screen. It is event driven – Windows notifies a program of small-scale events (a key is pressed, the mouse moves, its button goes down, its button goes up, etc.). FastCAD takes these events and processes them into larger events, such as “the data you are waiting for is available”.

Because it is necessary to completely return to Windows between each movement of the mouse or keystroke, we can’t just write a function that says “give me a line of text, do this with it, give me a mouse-picked position, do this with it, we’re done). We have to break the steps into pieces, and return to Windows anytime we want user input.

Many simple programs are designed so they can respond to single events – there is no fixed order to input. Unfortunately, with CAD, many of our tasks do not lend themselves to such design. Its true that we could use a dialog for everything such as the several parameters to specify a circular array of parts ,and thus let Windows dialog handling thread handle the multiple input for us (it is still actually there, its just that we don’t have to do it).

For CAD, we want a bit more flexibility – we want to be ablue to use different cursors, such as dynamic drag, etc. We what prompts to tell us whats going on, so we don’t have to design a screen full of little boxes into which we must type each different item (one cad program requires X and Y coordinates to be typed into separate boxes!), and of course, by making the program able to handle a text stream, we can have the ability to make and use macros.

So we write our commands as a series of functions, each one of which ends whenever we want input from the user. They may choose to do something different than we expect, such as nested commands, use of screen tools, etc. When they do get around to our next step, the data is then send to the next function of our command – like a string of beads, executed one after another when it is appropriate to do so. In this way, we can write our command “procedurally” and ywet not force the user to work that way, making life simpler for all of us.

The CTEST1 Command – The LINE Command Duplicated

Working form a known starting point, CTEST1 duplicates FastCAD’s LINE command. This shows how to get input, create entities and have them drawn, use cursors, get point locations (which the user might specify with modifiers, a text string, a mouse click, with attach, etc. – not our problem), and end the command when no more points are specified. The data items used by this command are:

Line2 BuildL = { sizeof(Line2), ET_Line2, 0, 0, 0, 0, 0, 0, 1, 0.0, 0, 0,

 0.0, 0.0, 1.0, 1.0 };

IDList* hDwgDL;

pENTREC pEntRec;

The BuildL structure is a prototype Line entity. It is defined in the ESTRUC.H include file in the XP SDK. The structure of entity records in the database will be explored in much more depth in later chapters. We’ll fill this in with valid information, then append a copy to our drawing database.

Each drawing list (FastCAD can actually process several drawings) has an object handle, IDList*, that we use to perform operations on the drawing database, and when an entity has been appended to the drawing database, a pointer to its final location is saved in a pENTREC type of variable (pointer to an entity record).

Armed with these data items, we can start our command by asking for the first point of a line, using a cross-hairs cursor while doing so. We’ll specify the function to call when the data is available, or if the command is canceled. Also, we will prototype each function in the “beads” of the command now, both because the compiler needs them before references are made to them, and because it helps to see how many steps there are. The CTEST1 command has two additional “beads” CTEST1B and CTEST1C:

void XPCALL CTEST1B (int Result);

void XPCALL CTEST1C (int Result);

void XPCALL CTEST1 (void)

{

ReqData(RD_2dC8,&BuildL.Geo.p1,"1st point:\0",

RSC(RDC_RXH2),CTEST1B,RDF_NONE,IDH_LINE2);

}

The ReqData function makes a data request for a 2d, double precision point (RD_2dC8), which will be stored at &BuildL.Geo.p1, the prompt is “1st point:\0”, the cursor will be the 2d cross-hairs cursor (RSC(RDC_RXH2) (a function could be specified for a custom dynamic cursor), and when the point has been stored, the CTEST1B function will be called. No special processing flags are set (RDF_NONE), and the context-sensitive help information to be displayed during this step is pointed to by IDH_LINE2.

When the data is either available, or the command has been cancelled, or invalid data has been entered, the CTEST1B function will be called:

void XPCALL CTEST1B (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

ClearSelect();

// for select by prior

hDwgDL->DLMarkUndo();

SetCursorOrg2(BuildL.Geo.p1.x,BuildL.Geo.p1.y);

ReqData(RD_2dC8,&BuildL.Geo.p2,"Next point:\0",

RSC(RDC_RBand2),CTEST1C,RDF_NONE,IDH_LINE2);

}

First – was valid data entered? If not, end the command.

Next, get the handle to the working drawing list.

Clear any selected objects, so selection by prior will work.

Mark the start of an Undoable operation – undo will go back to “now”

Set the origin of a rubber-band cursor to the first point we just received, which is stored in the BuildL structure where we specified, and then request the endpoint of a line, to be stored at &BuildL.Geo.p2, with a “Next Point:” prompt, a 2d-rubber-band cursor, and call CTEST1C when the point is available.

When the next point have been stored, the CTEST1C function is called:

void XPCALL CTEST1C (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

//
Append the entity to the database and draw it

pEntRec=hDwgDL->DLApnd(&BuildL);

SetCStuff(pEntRec);

hDwgDL->DLSelect(pEntRec);

EDraw(NULL,pEntRec);

ShowChanges();

//
Setup for chained line creation

BuildL.Geo.p1.x=BuildL.Geo.p2.x;

BuildL.Geo.p1.y=BuildL.Geo.p2.y;

SetCursorOrg2(BuildL.Geo.p1.x,BuildL.Geo.p1.y);

ReqData(RD_2dC8,&BuildL.Geo.p2,"Next point:\0",

RSC(RDC_RBand2),CTEST1C,RDF_NONE,IDH_LINE2);

}

Again, if no valid point was entered, we end the command.

If it was, we do the following:

Append a copy of the prototype line

Copy the current common stuff to it (color, styles, layer, etc.)

Select the entity so a later select by prior will work correctly

Draw the new line in its correct color and style in the off-screen buffer

Show the changes so the user will se the new line

The we chain the line by copying the 2nd point into the first points location in the prototype line structure. Chane the cursor origin to point to the new first point, and once again request a “2nd point” – when available, CTEST2C will be called again.

And that implements the chained line command, with all possible entry options, nested commands, screen tools use (like visual color picking, etc).

The CTEST2 Command – A Duplicate of the MOVE Command

The CTEST2 command is more complex – it operates on perhaps several entities that are already in the drawing to move them to a new location.

GPOINT3
MoveFrom,MoveTo;

TMat
MoveTM;

void XPCALL CTEST2B (int Result);

void XPCALL CTEST2C (int Result);

void XPCALL CTEST2D (int Result);

Data items are move-from and move-to points, and a transformation matrix, a mathematical way of encapsulating several geometric transforms into one operation. There will be three additional functions for the CTEST2 command.

First we ask for a selection of entities to be moved. This one request automatically enables all of FastCADs selection options:

void XPCALL CTEST2 (void)

{

ReqData(RD_Pick,NULL,RSC(RSC_Select),

RSC(RDC_Arrow),CTEST2B,RDF_NONE,IDH_SELECT);

}

The RSC(RSC_Select) tells ReqData to use FastCAD’s standard “Select entities:” prompt from its language resource file.

CTEST2B is called when the selection has been completed: If successful, it requests a “move from” point:

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

ReqData(RD_3dC8,&MoveFrom,RSC(RSC_MoveFrom),

RSC(RDC_RXH3),CTEST2C,RDF_NONE,IDH_MOVE);

}

CTEST2C is called when the from point has been entered, and if successful, it asks for a “move-to” point:

void XPCALL CTEST2C (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

hDwgDL->DLMarkUndo();

SetCursorOrg3(MoveFrom.x,MoveFrom.y,MoveFrom.z);

ReqData(RD_3dC8,&MoveTo,RSC(RSC_MoveTo),

RSC(RDC_RBand3),CTEST2D,RDF_NONE,IDH_MOVE);

}

When that point is entered, the CTEST2D function will be called.

void XPCALL CTEST2D (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

CTMPSH();

CTMI3();

CTMT3(MoveTo.x-MoveFrom.x,MoveTo.y-MoveFrom.y,

MoveTo.z-MoveFrom.z);

STCTM(&MoveTM);

CTMPOP();

hDwgDL->DLScan(&CTEST2Rec,DLS_Edit,0,0);

ShowChanges();

CmdEnd();

}

If successful, we have everything we need to perform the move operation, so we get the Dlist handle of the working drawing, and we set up a transform matric. Since these are in a stack, and we don’t want to interfere with others who may be suing it, we PUSH the Current Transform Matrix (CTMPSH), clear it to the identity matrix (CTMI3) so that our copy so far does nothing,

We specify a translation by the difference between the move from and move to points, and we save a copy of the result in our local transform matrix MoveTM. Then we pop the matrix stack back to its original state.

(Most books on computer graphics programming have excellent discussions of the use of a transform matrix. We will discuss this in greater depth later). The essential idea is that the MoveTM now encapsulates the mathematical information to move geometry as specified.

Next, we ask to have the drawing list scanned for an edit operation – this means we will only see those entities that the user selected. Fior each of them, the Ctest2Rec function will be called:

int XPCALL CTEST2Rec (IDList* hDL,pENTREC pEntRec,int Parm1, int Parm2)

{

pENTREC pNew;

pNew=hDwgDL->DLClone(pEntRec);

ETran(pNew,&MoveTM);

EErase(NULL,pEntRec);

EDraw(NULL,pNew);

return(0);

}

This function makes a clone of the selected entity, marking the original as erased (but not gone – UNDO might need it), transforms the entity geometry per our transformation matrix, undraws (Eerase from the image buffer) the entity in its old position (by using the still present but marked erased from the current drawing list old version we cloned), and drawing the new cloned and modified version to the image buffer.

When all of the entities have been moved, the CTEST2D function calls ShowChanges so the user will see the move, and CmdEnd to end the command.

That’s it.

Chapter 4: XPTEST.ASM – The Same XP in MASM

We understand that many people will never wish to write anything in assembler. However, it is a tradition with FastCAD, and does produce incredibly small XPs that run quite fast. For something like the CXPTest XP, there is no real advantage to using assembler, but here is how it would be done.

Try To Build the XPTEST XP In the SDK, to verify correct installation of MASM, MSVC, and its VCVARS32.BAT file which allows command line use of the MSVC Linker.

Edit the file REBUILD.BAT, and replace the \FCW7 in the last line with the path to your FastCAD7 installation (usually C:\FASTCAD7):

del *.pdb

ml -c -Zi -coff -nologo XPTest.asm

rc -r xptest.rc

link @xptest.rsp

copy XPTest.DLL \FCW7

Then, from a DOS prompt, build the XP:

C:

Cd \XP7DEV\XPTEST

REBUILD

If all goes well, you see a line from the linker similar to:

Creating library XPTEST.LIB and object XPTEST.EXP

And there will be no errors listed by the copy command – the XPTEST.DLL was copied

Successfully to your FastCAD7 install directory.

The essential files are XPTEST.ASM (the XP source file), XPTEST.RSP (the file that

Tells the linker what libraries to link against), and the REBUILD.BAT file, which details the necessary steps to build the XP.

ML is the assembler

RC compiles any resources

LINK links the pieces together into a DLL

COPY copies it into your FastCAD directory.

Testing the XPTEST DLL

In XPTEST, the two commands are ATEST1 and ATEST2, so you can have this and the CXPTEST DLL installed at the same time. In addition, XPTEST includes the ATEST3 command, which demonstrates a dialog with several different types of controls shown.

Chapter 5: The FormSt Output Function

FormSt stands for “Format String”, although the function does much more than this. It always formats text and variables into a string, but the result can be stored in a string, displayed in the prompt area, a text window, the status bar, or any of several forms of message boxes, including question boxes that return yes/no results, Retry/Cancel boxes, Yes/No/Cancel boxes, warning or error boxes, or the title of the current dialog when processing one. And they all work alike.

FormSt can format decimal or hexidecimal values from byte, word, or dword integers (char, short, int in C), both float and long (real4 or real8) real values, and both 2d and 3d point structures. Real values can be formatted as distances, angles, or areas, according to the user’s currently selected display format. Display items can be variable or fixed length, justified right or left within that field, and can have the number of decimal points specified, or the user’s current selection can be used. Strings can be included as variables.

While the FormSt function provides a wealth of functionality which can be a bit overwhelming at first, keep in mind that you can start easy and learn more as you go – it is not necessary to master all of its capabilities in order to make good use of it.

The FormSt function is prototyped in FormSt.h like this:

Int _stdcall FormSt(void* pPatrn, void *Vlist,

 void *pBase, char *dest);

pPatrn is the address of a pattern string

Vlist is the address of a list of ItemFmt structures

pBase is a pointer that can serve several functions

dest is the output destination – nominally the address of a result string

Its simplest use, to output a string to a message box, looks like this:

FormSt(“My message”, RSC(FV_NONE),NULL,RSC(FD_MsgBox);

Where the RSC() macro casts integer constants to an appropriate type. The constants used in place of pointers specify alternate behavior.

Displaying Variable Values

When you wish to include the values of variables to be formatted, you do so in two parts. First, in the pattern string, you have a variable indicator, of the form “!01” through “!99” where the number is used to specify different variables. It is the index into a table of ItemFmt structures.

The ItemFmt structure (specified in FormSt.h) is:

typedef struct

{

DWORD
*vadr;
// var adrs/RSCID

char
tcode;
// type code

char
jcode;
// justification code

char
fwid;

// field width

char
ndecp;
// decimal places

} ItemFmt;

A list of such structures, one per variable to be displayed, is used with each call to FormSt. The order 1..N in this list is the !dd number used in the pattern string to reference that variable.

As an example, using this data:

Int tvar1=2000;

Int tvar2=20;

ItemFmt MyPackets [] =

{

{ tvar1,FT_Dec4,FJ_Var,0,0 },

{ tvar2,FT_Dec4,FJ_Var,0,0 }

};

this function call:

FormSt(“Display A=!01, B=!02\0”,&MyPackets,NULL,RSC(FD_MsgBox));

Will produce the output:

Display A=2000, B=20

An alternate form is available using macros, that is compatible with V6 XPs, and works similar to the MASM code, where a pointer to the pattern string immediately preceeds the ItemFmt structure list:

Int tvar1=2000;

Int tvar2=20;

FORMSTPKT(MyOutput,”Display A=!01, B=!02\0,2)

ITEMFMT(tvar1,FT_Dec4,FJ_Var,0,0)

ITEMFMT(tvar2,FT_Dec4,FJ_Var,0,0)

FORMSTEND
This function call:

FormSt(&MyOutput,RSC(FV_ASM),NULL,RSC(FD_MsgBox));

Will produce the output:

Display A=2000, B=20

It is recommended that new C/C++ SP’s use the first form.

Specifying the ItemFmt structure values

The ItemFmt structure has these elements, in order:

vadr – a pointer to the variable

tcode – a data type code, which determines how the data is formatted

jcode – a justification code – left, right, or just big enough field width

fwid – the fixed field width, or 0 for variable-width fields

ndecp – the number of decimal places to display

Again, the FormSt.h file has the current supported values. tcode in particular may have additional values added. Here are the tcode values as of this writing:

#define FT_Stg
0
// ASCIIZ string

#define FT_UDec1
1
// unsigned byte

#define FT_UDec2
2
// unsigned word

#define FT_UDec4
3
// unsigned dword

#define FT_Dec2
4
// signed word

#define FT_Dec4
5
// signed dword

#define FT_Hex1
6
// hex byte

#define FT_Hex2
7
// hex word

#define FT_Hex4
8
// hex dword

#define FT_Real4
9
// dword real

#define FT_Real8
10
// qword real

#define FT_2dC4
11
// 2d dword X,Y dword coordinate

#define FT_2dC8
12
// 2d dword X,Y qword coordinate

#define FT_3dC4
13
// 3d dword X,Y,Z dword coordinate

#define FT_3dC8
14
// 3d dword X,Y,Z qword coordinate

#define FT_Dist4
15
// dword real distance

#define FT_Dist8
16
// qword real distance

#define FT_Brng4
17
// dword real bearing angle

#define FT_AngW4
18
// dword real angle width

#define FT_Brng8
19
// dword real bearing angle

#define FT_AngW8
20
// dword real angle width

#define FT_Area4
21
// dword real area

#define FT_Area8
22
// qword real area

The 3rd parameter, jcode, specifies how the final formatted value of the variable is justified within a fixed field width specified by the 4th parameter, fwid, or that the field will be exactly the size needed (in which case fwid should be 0):

#define FJ_Var
0
// variable width field

#define FJ_Left
1
// left justified

#define FJ_Cen
2
// center justified

#define FJ_Right
4
// right justified

The 5th parameter, ndecp, specifies the number of decimal places for any real values. If not used, it should be 0. Two special values are available:

#define FDP_User
0xFF
// current user-sel # dec place

#define FDP_Dim
0xFE
// current user-sel dimension # dec pl.

Variable Redirection
Two special flags are available that may be added to the tcode value you specify:

#define FT_Ptr
0x80
// pointer to data flag

#define FT_Base
0x20
// var is offset from pBase

FT_Ptr specifies that the address specified in the vadr field is a pointer to a pointer, rather than the address itself. FT_Base tells the FormSt function to add the pointer specified in its 3rd parameter, pBase, to the value of vadr, to get the final address of the variable. This can be used to format structure elements by specifying the structure’s address in pBase, and the offset to the element in vadr. This is particularly useful when you have a pointer to a structure such as an entity record, and wish to display an element of the structure to which the pointer is pointing.

FormSt Destinations

FormSt is a very versatile function. Its output can be directed to several forms of dialog boxes, as well as several predefined screen locations. Its 4th parameter, dest, is either the address of a character string, or an integer code (use the RSC() macro for the appropriate cast) that specifies any one of several standard destinations. The complete list is in the FormSt.h file, the list current as of this writing is reprinted here:

#define FD_MsgBox

1
// Message Box (generic, no icons)

#define FD_InfoBox
2
// Info icon message box

#define FD_WarnBox
3
// Warning (! icon) message box

#define FD_ErrorBox
4
// Critical error message box

#define FD_QuestBox
5
// Question (yes/no) message box

#define FD_CancelBox
6
// Yes/No/Cancel message box

#define FD_RetryBox
7
// Retry/Cancel message box

#define FD_Prompt

8
// prompt bar

#define FD_TxWin

9
// current text window

#define FD_Dlgtitle
10
// Dlg Box title

#define FD_Status

11
// Status bar

Those destinations that return a response do so with standard Win32 values, such as IDYES, IDNO,and IDCANCEL. An example of using a question box would be:

If(FormSt(“Do you really want to do this?”,

 RSC(FV_NONE),NULL,RSC(FD_QuestBox)) == IDYES)…

The use of FD_TxWin and FD_Dlgtitle is described in later chapters.
Chapter 6: Requesting Input

Introduction

If you did not follow the explanation of the CXPTEST program given in chapter 3, please do so now, particularly the “FastCAD’s Command Structure” section. It gives a good overview of what we call “beads” – a set of functions, called one after the other, with each one ending when you desire input from the user.

This unusual architecture is a throwback to the procedural coding practices common before event-driven programming. To provide the user with great flexibility in input, where a point coordinate may be specified with mouse position clicks in any of several windows, or a modifier used with an existing entity, or entered explicitly using absolute, relative or polar coordinates, or macro variables or expressions, is a far cry from the event – a mouse click or key press that signifies the end of a sequence of many events that accomplish the above versatile forms of input.

In addition, when we think of the types of operations we wish to achieve with CAD, many of them can not be accomplished with a simple, single, select the object, now do one thing to make the operation – how would you create a circular array with such an input structure? On approach is to sue a dialog box, with all of the desired values entered there. This is really the same issue – we just turn the sequencing over to Window’s dialog box external thread to handle for us.

There are problems with the dialog box approach – first, customers don’t always like its “stop what you’re doing until you do this” approach, its hard to use alternate input methods (such as a mouse click on a window or an entity modifier, or a click on a color bar or symbol library item for the items in a dialog, and there is no way to properly do macro processing with dialog box input.

It is these considerations that defined much of the user-interface structure and its program interface in FastCAD.

The result is: A command starts with a function having no parameters that FastCAD will call when its keyboard equivalent is entered, either by typing, a macro, a menu, or an icon macro. This function will call the ReqData function provided by the SDK whenever it needs input, specifying the function to be called when the data becomes available, and will then return.

That function, which we call a DataReceive function has one parameter, which indicates the status. It may indicate a valid data input, that the user cancelled the operation, that invalid data was entered, or other forms of status. Based on this code, the command may either continue, or terminate. A command always calls the SDK function CmdEnd when the command is complete. This causes FastCAD to make a request for a new command keyword equivalent. If the command continues, it may make another data request and exit. A command function or a DataReceive function should never return without either calling CmdEnd or ReqData.

The ReqData Function

The ReqData function is prototyped in RDATA.H. Its definition looks like this:

typedef void (_stdcall *PRCVPROC)(int Result);

void stdcall ReqData(

int dType,

// desired data type code

void* pData,
// address of data

char* pPrompt,
// adrs of prompt string/pkt

void* CsrId,
// cursor type/dyncsr proc adrs

PRCVPROC pRcvProc,// adrs of data avail procedure

int flags,

// options flags

int help);

// help id code

First, the typedef specifies the format of a data receive procedure (function) so that a pointer to the next function may be passed as a parameter. The parameters to ReqData are:

dType – a code indicating the type of data input desired

pData – the address where the data should be stored

pPrompt – the address of a prompt string, or FormSt packet (FV_ASM style)

CsrId – a code indicating what type of cursor is desired,

or the address of a dynamic cursor function.

pRcvProc – the address of the function to call when the data is available.

flags – special handling flags (default is RSC(RDF_None))

help – the context-sensitive help id for this function.

Numbers provided in the main help file are described in HELP.CPY

Use 0 if there is no specific help for this data request.

The data request types supported at the time of this writing are as follows (see RDATA.H for the most current information:

#define RD_Word
0
// text string term (normal delimiters)

#define RD_Line
1
// line of text (return ends)

#define RD_Char
2
// single character string (2 bytes!)

#define RD_DWin
3
// Pick a drawing window

#define RD_RWin
4
// 3d real window

#define RD_2dC8
5
// 2d coordinate (double)

#define RD_2dC4
6
// 2d coordinate (float)

#define RD_3dC8
7
// 3d coordinate (double)

#define RD_3dC4
8
// 3d coordinate (float)

#define RD_Dist8
9
// real drawing distance (double)

#define RD_Dist4
10
// real drawing distance (float)

#define RD_Brng8
11
// bearing angle in radians, 0 right, ccw+

#define RD_Brng4
12
// bearing angle in radians, 0 right, ccw+

#define RD_AngW8
13
// Angle width in radians, ccw+

#define RD_AngW4
14
// Angle width in radians, ccw+

#define RD_Real8
15
// real non-distance value (double)

#define RD_Real4
16
// real non-distance value (float)

#define RD_Int1
17
// signed char number

#define RD_Int2
18
// signed short number

#define RD_Int4
19
// signed int number

#define RD_MWC
20
// main window integer coordinate

#define RD_Color
21
// unsigned int color value

#define RD_Pick
22
// select multiple entities

#define RD_Pick1
23
// pick single entity for modify

#define RD_PickRef 4
// pick single entity for reference

#define RD_Layer
25
// get a layer id (unsigned int)

#define RD_FStyle
26
// get a fill style id (unsigned int)

#define RD_LStyle
27
// get a line style id (unsigned int)

#define RD_Font
28
// get a font id (unsigned int)

#define RD_TStyle
29
// get a TStyle id (unsigned int)

#define RD_DStyle
30
// get a DStyle id (unsigned int)

#define RD_Sheet
31
// get pointer to a sheet by name

#define RD_Matrl
32
// get a Material id (unsigned int)

#define RD_PThick
33
// get a pen thickness (float)

#define RD_Color2
34
// get fill color (unsigned int)

#define RD_LWidth
35
// get line width (float)

#define RD_PickRO
36
// pick multiple - read/only allowed

#define RD_WPlane
37
// get workplane id (unsigned int)

When you call ReqData, it sets up the data request on a stack so that incoming events may be properly processed, it displays the prompt text specified in pPrompt, and it notifies the mouse-movement code of the function to be used to draw the cursor, as specified in CsrId.

When the data has been entered, its final value is stored in the location you specify in the pData parameter, and the function specified in the pRcvProc parameter is called. If there is an error in entry, the data entry is cancelled (the user presses the ESC key for example), or any other unusual condition is called, the pRcvProc is called with a Result code indicating the condition, and data is not stored at *pData.

The flags parameter specifies one of the following special processing codes (again, defined in RDATA.h):

#define RDF_NONE

0
// no flags

#define RDF_PPKT

1
// prompt text is a packet

// (norm = adrs/rsc)

#define RDF_ORTHO

2
// ortho lock allowed

#define RDF_NOSNAP
4
// no ortho or snap

#define RDF_NOPRIOR
8
// don't set this as @ prior point

#define RDF_NODEPTH
16
// disable depth mode for this point

#define RDF_ONLY1

32
// rcv proc can handle ONLY1 return

#define RDF_NOVARS
0x40

// no variable expansion

#define RDF_LIVE

0x8000000
// live input only

//(^D has been proc)

#define RDF_ONVEC

0x4000000
// pt locks on the

// XData 3d vector

// (internal use)

#define RDF_SAMEX

0x2000000
// use prior X

#define RDF_SAMEY

0x1000000
// use prior Y

#define RDF_SAMEZ

0x0800000
// use prior Z

#define RDF_NOATCH
0x0400000
// no attach on this RDATA

#define RDF_ONLY1A
0x0200000
// if Only1, then it is an

// angle value

#define RDF_NOWP

0x0100000
// no workplane conversion

You will normally use either RSC(RDF_NONE) (or RSC(RDF_PPKT) if the pPrompt parameter points to a FormSt packet rather than a string) for the flags parameter.

The DataReceive Function

For each ReqData function call you make, there must be a data receive function that is specified in its pRcvProc parameter, and which will be called when the request is complete. An example, from the CXPTest sample code, is:

void XPCALL CTEST1B (int Result)

{

if (Result != RD_OK) { CmdEnd(); return; }

hDwgDL=GetWorkDL();

ClearSelect();

// for select by prior

hDwgDL->DLMarkUndo();

SetCursorOrg2(BuildL.Geo.p1.x,BuildL.Geo.p1.y);

ReqData(RD_2dC8,&BuildL.Geo.p2,"Next point:\0",

RSC(RDC_RBand2),CTEST1C,RDF_NONE,IDH_LINE2);

}

It has one parameter – the result code, the possible values of which are defined in RDATA.H:

#define RD_OK
0
// data ok

#define RD_BAD
1
// data bad

#define RD_DFLT
2
// data default

#define RD_ONLY1
3
// if only 1 val of 2 or 3

#define RD_CANCEL
4
// if data cancel

While the meaning of most should be obvious, RD_ONLY1 needs a bit more explaining. When you make a request for a point coordinate, two or three real values are returned. There are cases where you might want to allow entry of a single value (a distance rather than the first of two points to measure a distance, for example – this is used in the internal RD_Dist processing).

To allow this, you specify the flag value RDF_ONLY1in the ReqData call. In your data receive function, you check if the value of Result == RDF_ONLY1

